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ABSTRACT
We implement a novel approach for vaccine strain selection
based on a genotype network of viral strains. Current strate-
gies for selecting vaccine strains of multi-strain pathogens
involve present and forecasted incidence of particular strains.
Herewe emphasize the effects of transcending immunity, and
exploit the genetic similarity between strains to determine
optimal strategies in the case of multi-strain vaccination. We
employ a genetic algorithm (GA) to find optimal strategies in
the

(N
k

)
search space of k vaccines on N strains, seeking to

reduce the number of strains that may be reached in an out-
break. We tested the strategy on toy networks of varying size
and structure, before searching optimal strategies for multi-
ple real-world Influenza A (H3N2) genotype networks. This
approach consistently reduced the mean expected outbreak
size, with significant improvements on random searches.
Evolved solutions were evaluated on Influenza A virus net-
works that grew beyond the time of solution computation,
simulating the 6 month delay between strain selection and
distribution. Despite ignorance toward future states of the
genotype network, GA-evolved strategies consistently out-
performed even the best random solutions after a year of
novel strain emergence. Our approach suggests that knowl-
edge of the genotype network can provide useful insight for
vaccine strain selection.
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1 INTRODUCTION
High mutation rates in RNA viruses such as Zaire ebolavirus
[2], Influenza A virus [7], and Rabies lyssavirus [15] lead to
numerous contemporaneous strains [16]. Vaccines are de-
veloped based on the antigenic properties of such viruses,
however vaccine effectiveness can be less than ideal: in-
fluenza vaccine efficacy has been approximately 40% since
2005 [3, 5, 6, 11, 18]. Effective vaccination is challenged by:
(i) rapid evolution of viruses away from the antigenic prop-
erties of strain(s) used for vaccines [17], and (ii) properly
selecting strains for vaccines such that antibodies have a
wide-reaching effect on prevalent and future strains [4, 9].

Here, we address the problem of selecting vaccination
strains that provide antibody maximal coverage, in the case
where multiple vaccination strains may be used. This prob-
lem has time complexity O

(N
k

)
for N strains in the popu-

lation and k chosen vaccination strains. For large enough
N and even modest increments in k , the time to brute-force
an optimal combination of vaccination strains could be in-
feasible, especially with the use of in-depth modeling with
compartmental or agent-based models, let alone laboratory
viral inhibition assays.

Each spring and fall, theWorld Heath Organization (WHO)
makes recommendations for specific strains to be included
in the influenza vaccine for each hemisphere. WHO bases
their recommendations largely on the current and forecasted
incidence of a particular strain in the upcoming flu sea-
son, as well as the availability of similar vaccine viruses
[1]. Although some attention is given to the genetic similar-
ity between strains by incorporating phylogenetic analysis,
the WHO might not fully exploit the information contained
within genotype networks and complementary network anal-
yses to inform their recommendations. While the WHO typ-
ically only recommends one or two vaccine strains per sub-
type of influenza, we explore the implementation of multiple
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vaccine strains (k ≥ 3) per genotype network, given the
history of poor vaccine efficacy. Our approach suggests that
choosingmultiple strains based on knowledge of the network
structure can greatly increase the efficacy of a vaccine.

We developed an approximation of vaccine efficacy through
suppression of outbreak potential in the presence of vacci-
nated strains. Transcending effects of immunity, observed
in viruses such as influenza [14], allow for genetically simi-
lar strains to be influenced by nearby vaccines. A genotype
network was used to model the genetic similarity between
strains, allowing for real-world and simulated network struc-
ture to be evaluated.
In this paper we implement a genetic algorithm to find

ideal vaccination strains for a given genotype network. In
Section 2 we discuss the details of the GA implementation,
including solution representation, fitness evaluation, and the
use of genotype networks. In Section 3, we first test this
approach on a series of simple toy networks and a small
Erdős-Rényi random graph to provide a clear understanding
of how the vaccination strategy evolves on relatively simple
network structures. We then apply the GA to a series of
influenza A H3N2 genotype networks of ranging in size and
complexity from size 81 to 1430, to test the approach on
complex and large real world genotype networks. Finally, we
evaluated GA-evolved and random vaccination strategies on
an influenza network that is growing through the addition of
novel strains arising via mutation over time, to simulate the
lag in time between the selection of the vaccination strain
and the end of a flu season.

2 METHODS
Genotype Network
A given set of strains are related to one another through a
genotype network. Each node in this network corresponds
to a unique gene or protein sequence (defined as a strain),
with edges existing between strains whose sequences differ
by one base pair or amino acid (indicating a plausible mu-
tation pathway). In this paper, sequences will be assumed
to be the amino acids of a specified antigenic protein. In the
real-world application, this will be the hemagglutinin (HA)
surface protein of influenza A, H3N2.

Outbreak Fitness Function
In epidemic models the basic reproductive number R0 =

β
λ ,

where β is the number of new cases generated by a case in
time step t , and 1

γ is the mean time steps of infectivity for a
case. In an infinite population, R0 is the expected number of
new infections each individual case will produce. For R0 < 1
a disease is expected to die out, but for R0 > 1 sustained
transmission is expected; thusR0 = 1 represents the epidemic
threshold.

Here we define Ref f0 as the normalized effective R0 after
the effects of vaccination, such that for strain i and set of
vaccination strains V :

R
ef f
0 (i) =


1 if V = ∅

0 if i ∈ V∏
v ∈V

(1 − e−xiv /δ ) otherwise
(1)

where xiv is the genetic distance between strains i , v , and
δ is the tunable transcendence of immunity parameter. xiv
is determined from the shortest path in the network, which
was observed to closely approximate genetic distance in
real-world influenza networks (in the evaluation of fitness
on a growing network component in Section 3, we allow
the final network distances to be used in the calculation
of an incomplete network). Ref f0 equals 1 in the absence
of any vaccines, but is reduced to 0 for directly vaccinated
strains, and otherwise equals the product of immunity that
transcends vaccinated strains as a log decaying function of
genetic distance.
We define Rcr it0 as the normalized epidemic threshold,

constrained to (0, 1) for all R0 > 1:

Rcr it0 =
1
R0

, for R0 > 1 (2)

In this paper we let R0 = 2, a value comparable to that of
Ebola and pandemic influenza, such that Rcr it0 = 1

2 .
The fitness F for a given set of vaccination strains V

on network G is found by: (i) removing subcritical strains
(Ref f0 (i) < Rcr it0 ), which potentially (and ideally) fragments
the network into multiple components, then (ii) computing
the mean component size for each strain i:

F (V ,G) =

∑
j (jn)

2

G2
n

for component size jn , network size Gn

(3)
Thus F (V ,G) is the expected number of strains an out-

break can reach, through known strains: it is the expected
component size of an outbreak at a random strain. Minimiz-
ing this value will reduce the number of known strains an
outbreak will reach, and necessitate evolutionary detours
around vaccinated regions of genotype space were the virus
to connect to other known components.

GA-Evolved Vaccination Strategies
Here we implement a near-canonical GA. Each solution, or
vaccination strategy, exist as vector V , whose length equals
the number of vaccination strains. V contains the indices of
the nodes (strains) to be vaccinated, with values from 1 to
network size N .

For a given network, a population of P random solutions
is initialized. For up to Nдen repetitions, the population is
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Figure 1: Representative vaccination strategy solutions for
toy networks. Blue nodes represent strains included in the
vaccination. Red nodes indicate nodes that are below the
critical threshold for an outbreak. Black nodes are above
that threshold.

evolved through parent selection based on fitness, crossover,
andmutation. Parents are selected through tournament selec-
tion with tournament size Tn . Parents are then recombined
via single-point crossover with probability Pc . Indices within
each solution are then mutated to a random value from 1
to N according to probability Pm . The best solution at each
time step is noted, with the GA exiting before Nдen reps if
the absolute minimum fitness F (V ,G) = 0 is found.

Experimental Design
Our investigation is three-part: (i) evolving solutions on toy
networks, to understand the effects of network structure
on solutions, (ii) evolving solution on real-world genotype
networks, and (iii) evaluating decay of fitness on a growing
network.

In the first part, we constructed the toy networks consist-
ing of a star, lattice, and chain network of size N = 100, as
well as an Erdős Rényi random network of size N = 100,
existing as the giant component of aG(N ,p) = G(110, 0.025)
graph (Figure 1). For 20 repetitions, we ran a GA on each
toy network according to the parameters in Table 1. The
GA exited when a perfect solution was found (F (V ,G) = 0)
or upon reaching Nдen generations. The GA solutions were
compared to a distribution of 103 random solutions.

In the second part we evolved solutions on a series of real-
world influenza AH3N2 genotype networks. These networks
were constructed from amino acid sequences of HA observed
globally January 2000 through May 2019, sourced from the

Influenza Research Database [19], in which sequences are
represented as nodes and edges exist between sequences
differing at one amino acid — indicating a plausible mutation
pathway. The real-world networks represent 9 components
selected from this network to give a distribution of network
sizes from N = 20 to N = 1430. For both 3 and 4 vaccination
strategies, the GA was run 20 times for each network, for
3 values of transcendence (δ =[1,2,3]) and the parameters
found in Table 2. The GA solutions were compared to a
distribution of 103 random solutions.
In the third part we evaluated changes in fitness as a

network grows beyond the time at which a solution was
evolved. This simulates vaccination strategies evolved on
present strains prior to the emergence of novel strains, at
which point fitness may be reduced as the genotype network
has grown. Solutions were evolved on a subset of a genotype
network of size N = 791. The first half of the network to
appear (N = 384, approximated to the nearest day at which
50% of nodes exist) is used to evolve solutions according to
Table 3 across 20 reps. Note that fitness calculations were
given knowledge of the full network for accurate genetic
distance values. Fitness values were then found for these
solutions on the network after 3, 6, and 12 months, as well
as for a distribution of 103 random networks.

Statistical Analysis
To examine the fitness differences between random solutions
and GA-derived solutions across the different transcendence
values and network sizes, and to analyze the number of
function calls required by the different parameter sets, we
conducted a series of ANOVAs for each section of our three-
part experimental design. For the toy networks, influenza
networks, and growing influenza network, we structured our
model to examine fitness by group (GA-evolved or random)
and the main and interaction effects between network size
and transcendence values. To examine the effect of the tran-
scendence value, network size, and their interaction on the
number of function calls for the same data sets, we employed
an additional three models. In the third part of the study, we
examined how random and GA-derived solutions change in
fitness over time as the network grows bymodeling fitness as
a function of group (GA-evolved or random), days after vac-
cine selection, and their interaction effect. Additionally, we
show how the exponential scaling in the number of function
calls increases for the size of the network and the number
of nodes vaccinated. All analyses were conducted in the R
statistical programming language [13].

3 RESULTS
The GA was consistently able to derive useful solutions for
a combination of different network structures, network sizes
and transcendence values (Figures 1-3). For the toy networks,
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Table 1: GA parameters

GA Parameter Symbol Toy Nets Real Nets Temporal Net

Population size P 300 300 200
Genome length (# vaccine strains) V 3 [3,4] 4
Mutation rate Pm 1/V 1/V 1/V
Crossover probability Pc 0.2 0.2 0.2
Max generations Nдen 50 50 20
Tournament size Tn 2 2 2

Network size (# strains) N 100 20-1430 384 → 791
Epidemic threshold Rcr it0 0.5 0.5 0.5
Transcendence δ 1 [1,2,3] 1

Figure 2: Representative vaccination strategy for a moder-
ately sized real flu genotype network (N = 400). Blue nodes
represent strains included in the vaccination strategy. Red
nodes indicate nodes that are below the critical threshold
for an outbreak. Black nodes are above that threshold.

vaccination strategies selected by the GA showed in a man-
ageable setting how the algorithm took advantage of simple
structures to minimize super-critical nodes (Figure 1). There
was a difference in the number of function calls required to
find a solution between network types, but that was driven
by the star network which only needed an average of 200
function evaluations to find a perfect solution (Figure 3A).
We found in our experimental runs that the GA solutions
performed significantly better than the random solutions
in terms of fitness (p < 0.00001). On average, different net-
works structures performed differently depending on the
transcendence value used (p < 0.00001) (Figure 3B).
For real networks evolved for both 3 and 4 vaccinations,

useful strategies were discovered by the GA. A representative

example is shown in Figure 2. There was a significant differ-
ence in the number of function evaluations depending on the
network size and transcendence value with of the smaller
networks requiring fewer calls (p<0.00001) (Figure 3C and
3E). In terms of fitness, on both 3 and 4 vaccination strate-
gies, the GA performed significantly better than the random
solutions (p<0.00001) (Figure 3D and 3F). Again, on average,
different networks sizes performed differently depending on
the transcendence value used with large networks with low
transcendence performing the worst (p < 0.00001).

We found thatwhen random andGA solutionswere evolved
on a portion of a large example genotype network and the
network was allowed to grow, the GA solutions performed
significantly better than random ones (p<0.00001) (Figure 4).
However, both solutions slowly worsened through time as
the network grew (p<0.00001). No interaction was observed
between time and how the solutions were derived suggesting
that both solutions decayed at a similar rate (p = 0.955).
The GA was able to find successful solutions on the real

networks with linear scaling in the number of function eval-
uations required to find a workable solution. Figure 5 shows
the size of the search space for 1, 2, 3 and 4 vaccine strate-
gies on a loд10 scale. The GA search effort for 4 vaccines,
shown as black points, falls in-between the search space
of 1 vaccine and 2 vaccines. For the largest real network
(N=1430), to search the entire search space for 4 vaccina-
tion strategies, 1.74 ∗ 1011 function evaluations would be
required. At the 0.02 seconds it takes for one evaluation, it
would take 107.8 years to search the entire network. The GA
only performed 3.8 ∗ 103 evaluations on average and found
near-perfect (F = 0) solutions for transcendence values of
δ = [2, 3].
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Figure 3: (Left most column) The number of function calls (computational effort) on a log scale for each network and tran-
scendence value. (Right most column) The proportion of super-critical nodes to total nodes (fitness) by network for three
transcendence values with random solutions with mean shown as diamonds ± 1 standard deviation. Colors grey, blue and
black refer to small, medium, and high transcendence values respectively. The middle column is an expanded panel that
shows the variance in the smallest distributions of solutions. A and B refer to the toy networks (lattice, star, chain and Erdős-
Rényi) utilizing a vaccination strategy of three vaccines. C and D refer to the real networks from size 81 to 1430 with a vaccine
strategy of three and E and F refer to a strategy of four on real networks of size 81 to 1430.
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4 DISCUSSION
Network Structure and Strategies
Network structure heavily influences both optimal fitness
and location of vaccination strains within a genotype net-
work. Fitness measured by the ability of the vaccination
strategy to fragment the network into small components al-
lowed for minimization of expected outbreak size (by strain
access) in the known genotype space. Thus solutions are
rewarded for their ability to not only remove nodes from the
network, but to fragment the remaining components. This is
seen in the toy networks of Figure 1. The chain is broken into
4 nearly if not exactly evenly sized components, minimizing
the mean expected outbreak size.

A comparison of the star and the chain indicate the effects
of network diameter. Networks of small diameter allow more
nodes to fall within the radius of sub-critical influence for a
vaccine strain. Although the star and chain are of the same
number of nodes, the star’s small diameter allows many (if
not all) vaccination strategies to provide complete coverage
of the known genotype space, indicating that no outbreak
would occur. These star-like hubs are found in the influenza
networks, whose degree correlates with duplicate samples
of a sequence (i.e. greater incidence). Hubs may indicate a
particularly virulent or novel strain, yet one whose vaccine
would cover a large number of strains, and thus be a target
for vaccines. Indeed, hubs were important building blocks
for solutions to the influenza networks. However, reducing
total super-critical strains is only one way to reduce outbreak
size. Fragmentation of the network into smaller components
reduces mean outbreak size, and in larger networks, may
only be achievable to significant effect through cooperation
between vaccine strains.

The lattice and Erdős-Rényi random graphs demonstrate
the cooperation between vaccines, in which only through
their combined effect: (i) do some nodes become sub-critical,
and (ii) may the network be split at multi-node bridges be-
tween large components. The former effect models the case
where immunity to multiple strains have a multiplicative
or additive effect, or immunity not determined by just the
nearest strain. This is an assumption of the model, that the in-
fluence from multiple vaccines has a multiplicative effect on
immunity, which may be more optimistic than what would
be found in transcendence in a real-world application (in
comparison to using the maximum immunity, or another
interaction between them). The latter effect of cooperation,
vaccination at multi-node bridges, implements what may be
an important control mechanism on genotype space: block-
ing evolutionary routes between large or virulent regions
of potential protein structures. Deep mutational scanning,
which predicts protein stability, could evaluate the effective-
ness of targeting these evolutionary bridges by indicating
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Figure 4: Distribution of the fitnesses from GA-evolved and
random vaccination strategies on a growing Influenza A
(H3N2) genotype network, 0, 90, 180, and 360 days after the
vaccination strategy was selected.

the presence or absence of other pathways between large
regions of genotype space [12].
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Cooperation between vaccine strain placement is crucial
to fragment the network. For instance, a one-strain vaccine
strategy on the lattice is optimized with an internal and cen-
tral placement, while two or more strains must be placed
such as to split the network in half, depending on the level
of immunity transcendence. In Figure 1 we see the vaccine
strains placed to not only make many nodes sub-critical
but to isolate the peripheral regions, reducing mean compo-
nent size. The Erdős-Rényi network shows a similar strategy:
dense central regions remove numerous nodes, while opti-
mal placement fragments the peripheral regions as much as
possible.

Real-World Vaccination Strategies
Vaccination strategies on influenza networks exhibited the
same behaviors seen on toy networks. Both 3- and 4-strain
vaccination strategies frequently included hubs, while not
exclusively using these high degree nodes to fragment the
networks. Figure 2 shows a 4-strain strategy on an influenza
A (H3N2) HA network of size N = 400, that included 3
hubs, while also utilizing a low-degree node to separate the
lower-left region component from the upper-right. For tran-
scending immunity levels of δ = [1, 2, 3] and 3 to 4 vaccine
strains, GA-evolved solutions consistently performed better
than random solutions (p < 0.00001). This demonstrates the
superiority of the GA for multi-strain vaccine implementa-
tion.
The function calls of the GA scaled well with both net-

work size and number of vaccination strains, in addition to
tolerating variation in transcendence of immunity (Figure
3, leftmost column). This is in contrast to the O

(n
k

)
time

complexity of exhaustively searching solutions, visualized
in Figure 4. This indicates that a simple GA implementation
can sufficiently find low-fitness solutions for large search
spaces.

Evolved Strategies Tolerate Network Growth
GA-evolved vaccine strategies suffered no excess fitness
losses relative to random strategies on a growing network.
This contradicted our suspicion that random strategies could
bemore resilient to evolved strategies as novel strains emerged
in the genotype network, if their location became more opti-
mal as the network grew. Instead, we see no such advantage
in random solutions, as even the best random solutions wors-
ened in time (Figure 4). The insignificance of the strategy-
by-date interaction (p=0.955) indicates no reduced fitness
decay in random strategies. Combined with initial superi-
ority, evolved solutions retain the best fitness values with
modest increases for 12 months (Figure 4) and beyond. Fit-
ness evaluations beyond 12 months post-solution evolution
are not considered, since few strains in the initial portion

of the network are likely to be prevalent (thus relevant for
vaccine consideration).

Random solutions that improved in time were rare, and
it is unlikely to find a random solution with both fitness
comparable to GA-evolved solutions and improvements as
the network grows. If a random solution were to be found
that became better than GA-evolved solutions as the network
grew, there would be no justification for its implementation
given the unknown future of the structure network. GA-
evolved solutions remain superior for coverage of future
outbreaks.

Future Directions
The fitness function assumes immunity transcends as a loga-
rithmic function of genetic distance between HA sequences
of strains, which could be refined by: (i) a more data-driven
selection of the transcendence function via HA inhibition
assays, such as the experiments that have been conducted
on the avian Influenza A H5N1 [14] subtype, and (ii) more
closely approximating of how multiple acquired immunities
combine to affect other strains (e.g.multiplicative or additive
effects, if not more complex).

More information could be added to the network structure
through weighting the edges by the similarity of the amino
acid substitutions between nodes, by using an approach sim-
ilar to BLOSUM [8]. This could be used to update the tran-
scending immunity between genetically similar strains. Due
to local optima observed within the fitness landscape, this
GA approach could also be improved by implementing an
algorithm that promotes diversity and decreases premature
convergence, such as an Age-Layered Population Structure
(ALPS) [10], to increase the likelihood that the global optima
is found, as well as reducing the need for multiple restarts
of the GA.

5 CONCLUSION
Here we identified the features of GA-evolved vaccination
strategies on genotype networks and demonstrated their
success in reducing expected outbreak size by number of
strains. Our approach consistently identified efficacious solu-
tions on a variety of different network structures, sizes, and
transcendence values.
The location of vaccination strains within the network

greatly influences the overall fitness of the vaccination strat-
egy. A simple GA identifies these optimal vaccine strain
selection strategies with considerably less effort than would
a brute force search. The GA-evolved solutions were ob-
served to be robust to network growth, resulting from muta-
tions leading to novel strain emergence in real-world viral
genotype networks. GA solutions consistently lead to better
strategies than random search, across network size, number
of vaccine strains, and parameter settings.
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We call for investigations that address the following: (i)
identification of the viable regions of genotype space, such
as through deep mutational scanning, to allow for evolution
of vaccination strategies that include future strains, (ii) re-
finement of the relationship between genetic similarity of
viral strains and the transcendence of immunity, to better
inform vaccine coverage, and (iii) evolutionary strategies
of vaccine implementation that account for forecasting of
active regions of genotype space.
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